cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A359082 Indices of records in A246600.

Original entry on oeis.org

1, 3, 15, 63, 255, 495, 4095, 96255, 98175, 130815, 203775, 1048575, 5810175, 6455295, 16777215, 67096575, 88062975, 389656575, 553517055, 850917375, 1157349375, 9141354495, 12826279935, 22828220415, 26818379775, 31684427775, 68719476735, 242870910975, 1168231038975
Offset: 1

Views

Author

Amiram Eldar, Dec 15 2022

Keywords

Comments

Numbers k with a record number of divisors d such that the bitwise OR of k and d is equal to k (or equivalently, the bitwise AND of k and d is equal to d).
All the terms are odd since A246600(2*k) = A246600(k).
This sequence is infinite since A246600(2^m-1) = A000005(2^m-1) = A046801(m), and A046801 is unbounded (A046801(2^(m+1)) > A046801(2^m) for all m >= 0).
The corresponding record values are 1, 2, 4, 6, 8, 11, 24, 25, 28, 32, 35, 48, 56, 89, 96, 105, 121, 127, 148, 162, 216, 243, 245, 256, 319, 358, 512, 633, 768, ... .
2*10^11 < a(28) <= 2^48 - 1.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; seq={}; sm = 0; Do[If[(sn = s[n]) > sm, sm = sn; AppendTo[seq, n]], {n, 1, 10^6}]; seq
  • PARI
    lista(nmax) = {my(list = List(), ndmax = 0, d, s); for(n = 1, nmax, nd = sumdiv(n, d, bitand(d, n)==d); if(nd > ndmax, ndmax = nd; listput(list, n))); Vec(list)};

Extensions

a(28)-a(29) from Martin Ehrenstein, Dec 19 2022

A359080 Numbers k such that A246600(k) = A000005(k).

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 51, 53, 59, 61, 63, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 111, 113, 119, 123, 125, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 187, 191, 193, 197, 199, 211, 219
Offset: 1

Views

Author

Amiram Eldar, Dec 15 2022

Keywords

Comments

Numbers k such that for all the divisors d of k the bitwise OR of k and d is equal to k (or equivalently, the bitwise AND of k and d is equal to d).
Subsequence of A102553. Terms of A102553 that are not in this sequence: 2, 135, 175, 243, 343, ... .
All the terms are odd since if k is even and d = 1 then bitor(k, 1) > k and thus A246600(k) < A000005(k).
All the odd primes are terms.
All the numbers of the form 2^k-1 (A000225) are terms.
Numbers k such that the bitwise OR(k, d_1, d_2, ..., d_m) = k, where d_1, ..., d_m are the divisors of k. - Chai Wah Wu, Dec 18 2022

Crossrefs

Subsequence of A102553.
Subsequences: A000225, A065091.

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; Select[Range[250], s[#] == DivisorSigma[0, #] &]
  • PARI
    is(n) = sumdiv(n, d, bitor(d, n) == n) == numdiv(n);
    
  • Python
    from itertools import count, islice
    from operator import ior
    from functools import reduce
    from sympy import divisors
    def A359080_gen(startvalue=1):  # generator of terms >= startvalue
        return filter(
            lambda n: n | reduce(ior, divisors(n, generator=True)) == n,
            count(max(startvalue, 1)),
        )
    A359080_list = list(islice(A359080_gen(), 20))  # Chai Wah Wu, Dec 18 2022
    print(A359080_list)

A359081 a(n) is the least number k such that A246600(k) = n, and -1 if no such k exists.

Original entry on oeis.org

1, 3, 39, 15, 175, 63, 1275, 255, 1215, 891, 495, 6975, 14175, 26367, 13311, 8127, 20475, 42735, 95931, 69615, 36855, 24255, 404415, 4095, 96255, 423423, 253935, 98175, 913275, 165375, 507375, 130815, 3198975, 1576575, 203775, 2154495, 4398975, 1616895, 1556415
Offset: 1

Views

Author

Amiram Eldar, Dec 15 2022

Keywords

Comments

All the terms are odd since A246600(2*k) = A246600(k).

Crossrefs

Programs

  • Mathematica
    seq[nmax_, kmax_] := Module[{s = Table[0, {nmax}], c = 0, k = 1, i}, While[c < nmax && k < kmax, i = DivisorSum[k, 1 &, BitOr[#, k] == k &]; If[i <= nmax && s[[i]] == 0, c++; s[[i]] = k]; k++]; s]; seq[20, 5*10^6]
  • PARI
    lista(nmax, kmax=oo) = {my(s = vector(nmax), c = 0, k = 1, i); while(c < nmax && k < kmax, i = sumdiv(k, d, bitor(d, k) == k); if(i <= nmax && s[i] == 0, c++; s[i] = k); k++); s};

A361937 Numbers k with record values of the ratio A000005(k)/A246600(k) between the total number of divisors of k and the number of divisors d of k such that the bitwise OR of k and d is equal to k.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 336, 420, 840, 1680, 3360, 6720, 7560, 15120, 30240, 60480, 95760, 120960, 176400, 191520, 257040, 352800, 383040, 514080, 1028160, 1681680, 2056320, 2998800, 3112200, 5525520, 5997600, 6224400, 8353800, 12448800, 16216200, 24897600
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2023

Keywords

Comments

This sequence is infinite since the ratio A000005(k)/A246600(k) is unbounded. For example, if k = 2^m then A000005(k)/A246600(k) = m+1.
All the terms except for 1 are in A355670.

Examples

			The ratios A000005(k)/A246600(k) for k = 1, 2, 3 and 4 are 1, 2, 1 and 3. The record values, 1, 2 and 3, occur at 1, 2 and 4, the first 3 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := DivisorSigma[0,n]/DivisorSum[n, Boole[BitOr[#, n] == n] &];
    seq[kmax_] := Module[{rm = 0, k = 1, s = {}, r1}, Do[r1 = r[k]; If[r1 > rm, rm = r1; AppendTo[s, k]], {k, 1 , kmax}]; s]; seq[10^6]
  • PARI
    r(n) = numdiv(n)/sumdiv(n, d, bitor(d, n) == n);
    lista(kmax) = {my(rm = 0, r1); for(k = 1, kmax, r1 = r(k); if(r1 > rm, rm = r1; print1(k, ", "))); }

A363692 Terms of A363690 with a record number of divisors.

Original entry on oeis.org

3, 6, 12, 24, 36, 48, 72, 144, 168, 288, 336, 420, 840, 1680, 3360, 6720, 7560, 15120, 30240, 60480, 95760, 120960, 176400, 191520, 257040, 352800, 383040, 514080, 1028160, 1681680, 2056320, 2998800, 3112200, 5525520, 5997600, 6224400, 8353800, 12448800, 16216200
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2023

Keywords

Comments

The corresponding record values are 2, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 32, 40, 48, ... .

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && DivisorSum[k, Boole[BitOr[#, k] == k] &] == 2, dm = d1; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^5]
  • PARI
    lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = numdiv(k); if(d1 > dm && sumdiv(k, d, bitor(d, k) == k) == 2, dm = d1; print1(k, ", "))); }

Formula

a(n) <= 2*a(n-1) for n >= 2. - David A. Corneth, Jun 18 2023

A363693 Terms of A363691 with a record number of divisors.

Original entry on oeis.org

3, 9, 21, 81, 105, 225, 945, 5265, 5985, 11025, 16065, 36225, 89505, 105105, 187425, 345345, 389025, 1044225, 2027025, 4189185, 6185025, 20307105, 27776385, 76039425, 107972865, 286711425, 402026625, 1853445825, 2440353825, 3807428625, 5106886785, 9449834625
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2023

Keywords

Comments

Odd numbers k with a record number of divisors such that for all the nontrivial divisors d of k (i.e., divisors that are not 1 or k) the bitwise AND of k and d is not equal to d, or equivalently, the bitwise OR of k and d is not equal to k.
The corresponding record values are 2, 3, 4, 5, 8, 9, 16, 20, 24, 27, 32, 36, 40, 48, ... .

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && DivisorSum[k, Boole[BitOr[#, k] == k] &] == 2, dm = d1; AppendTo[s, k]], {k, 1, kmax, 2}]; s]; seq[10^5]
  • PARI
    lista(kmax) = {my(dm = 0, d1); forstep(k = 1, kmax, 2, d1 = numdiv(k); if(d1 > dm && sumdiv(k, d, bitor(d, k) == k) == 2, dm = d1; print1(k, ", "))); }
Showing 1-6 of 6 results.