cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A359082 Indices of records in A246600.

Original entry on oeis.org

1, 3, 15, 63, 255, 495, 4095, 96255, 98175, 130815, 203775, 1048575, 5810175, 6455295, 16777215, 67096575, 88062975, 389656575, 553517055, 850917375, 1157349375, 9141354495, 12826279935, 22828220415, 26818379775, 31684427775, 68719476735, 242870910975, 1168231038975
Offset: 1

Views

Author

Amiram Eldar, Dec 15 2022

Keywords

Comments

Numbers k with a record number of divisors d such that the bitwise OR of k and d is equal to k (or equivalently, the bitwise AND of k and d is equal to d).
All the terms are odd since A246600(2*k) = A246600(k).
This sequence is infinite since A246600(2^m-1) = A000005(2^m-1) = A046801(m), and A046801 is unbounded (A046801(2^(m+1)) > A046801(2^m) for all m >= 0).
The corresponding record values are 1, 2, 4, 6, 8, 11, 24, 25, 28, 32, 35, 48, 56, 89, 96, 105, 121, 127, 148, 162, 216, 243, 245, 256, 319, 358, 512, 633, 768, ... .
2*10^11 < a(28) <= 2^48 - 1.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; seq={}; sm = 0; Do[If[(sn = s[n]) > sm, sm = sn; AppendTo[seq, n]], {n, 1, 10^6}]; seq
  • PARI
    lista(nmax) = {my(list = List(), ndmax = 0, d, s); for(n = 1, nmax, nd = sumdiv(n, d, bitand(d, n)==d); if(nd > ndmax, ndmax = nd; listput(list, n))); Vec(list)};

Extensions

a(28)-a(29) from Martin Ehrenstein, Dec 19 2022

A359083 Numbers k such that A246600(k) = A000005(k) and A000005(k) sets a new record.

Original entry on oeis.org

1, 3, 15, 63, 255, 891, 4095, 262143, 1048575, 16777215, 68719476735
Offset: 1

Views

Author

Amiram Eldar, Dec 15 2022

Keywords

Comments

Numbers k with a record number of divisors, such that for all the divisors d of k the bitwise OR of k and d is equal to k (or equivalently, the bitwise AND of k and d is equal to d).
All the terms are odd since all the terms of A359080 are odd.
The corresponding numbers of divisors are 1, 2, 4, 6, 8, 10, 24, 32, 48, 96, 512, ... .
a(12) > 3*10^11, if it exists.

Crossrefs

Subsequence of A359080.

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; seq={}; dm = 0; Do[d = DivisorSigma[0, n]; If[d > dm && d == s[n], dm = d; AppendTo[seq, n]], {n, 1, 2*10^7}]; seq
  • PARI
    lista(nmax) = {my(list = List(), ndmax = 0, d, s); for(n = 1, nmax, nd = numdiv(n); if(nd > ndmax && sumdiv(n, d, bitand(d, n)==d) == nd, ndmax = nd; listput(list, n))); Vec(list)};

A359081 a(n) is the least number k such that A246600(k) = n, and -1 if no such k exists.

Original entry on oeis.org

1, 3, 39, 15, 175, 63, 1275, 255, 1215, 891, 495, 6975, 14175, 26367, 13311, 8127, 20475, 42735, 95931, 69615, 36855, 24255, 404415, 4095, 96255, 423423, 253935, 98175, 913275, 165375, 507375, 130815, 3198975, 1576575, 203775, 2154495, 4398975, 1616895, 1556415
Offset: 1

Views

Author

Amiram Eldar, Dec 15 2022

Keywords

Comments

All the terms are odd since A246600(2*k) = A246600(k).

Crossrefs

Programs

  • Mathematica
    seq[nmax_, kmax_] := Module[{s = Table[0, {nmax}], c = 0, k = 1, i}, While[c < nmax && k < kmax, i = DivisorSum[k, 1 &, BitOr[#, k] == k &]; If[i <= nmax && s[[i]] == 0, c++; s[[i]] = k]; k++]; s]; seq[20, 5*10^6]
  • PARI
    lista(nmax, kmax=oo) = {my(s = vector(nmax), c = 0, k = 1, i); while(c < nmax && k < kmax, i = sumdiv(k, d, bitor(d, k) == k); if(i <= nmax && s[i] == 0, c++; s[i] = k); k++); s};

A361937 Numbers k with record values of the ratio A000005(k)/A246600(k) between the total number of divisors of k and the number of divisors d of k such that the bitwise OR of k and d is equal to k.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 336, 420, 840, 1680, 3360, 6720, 7560, 15120, 30240, 60480, 95760, 120960, 176400, 191520, 257040, 352800, 383040, 514080, 1028160, 1681680, 2056320, 2998800, 3112200, 5525520, 5997600, 6224400, 8353800, 12448800, 16216200, 24897600
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2023

Keywords

Comments

This sequence is infinite since the ratio A000005(k)/A246600(k) is unbounded. For example, if k = 2^m then A000005(k)/A246600(k) = m+1.
All the terms except for 1 are in A355670.

Examples

			The ratios A000005(k)/A246600(k) for k = 1, 2, 3 and 4 are 1, 2, 1 and 3. The record values, 1, 2 and 3, occur at 1, 2 and 4, the first 3 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := DivisorSigma[0,n]/DivisorSum[n, Boole[BitOr[#, n] == n] &];
    seq[kmax_] := Module[{rm = 0, k = 1, s = {}, r1}, Do[r1 = r[k]; If[r1 > rm, rm = r1; AppendTo[s, k]], {k, 1 , kmax}]; s]; seq[10^6]
  • PARI
    r(n) = numdiv(n)/sumdiv(n, d, bitor(d, n) == n);
    lista(kmax) = {my(rm = 0, r1); for(k = 1, kmax, r1 = r(k); if(r1 > rm, rm = r1; print1(k, ", "))); }

A355670 Numbers k such that A246600(k) < A000005(k).

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96
Offset: 1

Views

Author

Chai Wah Wu, Dec 19 2022

Keywords

Comments

Numbers k such that bitwise OR(k, d_1, d_2, ... d_m) > k where d_1, ..., d_m are the divisors of k.
Complement of A359080.
First 21 terms coincide with A336376.
A102554 is a subsequence; this sequence contains 1, 135, 175, 243, 343, 351, 363, ... which are not in A102554.

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from operator import ior
    from functools import reduce
    from sympy import divisors
    def A355670_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n|reduce(ior,divisors(n,generator=True))>n,count(max(startvalue,1)))
    A355670_list = list(islice(A355670_gen(), 20))
Showing 1-5 of 5 results.