cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363692 Terms of A363690 with a record number of divisors.

Original entry on oeis.org

3, 6, 12, 24, 36, 48, 72, 144, 168, 288, 336, 420, 840, 1680, 3360, 6720, 7560, 15120, 30240, 60480, 95760, 120960, 176400, 191520, 257040, 352800, 383040, 514080, 1028160, 1681680, 2056320, 2998800, 3112200, 5525520, 5997600, 6224400, 8353800, 12448800, 16216200
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2023

Keywords

Comments

The corresponding record values are 2, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 32, 40, 48, ... .

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && DivisorSum[k, Boole[BitOr[#, k] == k] &] == 2, dm = d1; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^5]
  • PARI
    lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = numdiv(k); if(d1 > dm && sumdiv(k, d, bitor(d, k) == k) == 2, dm = d1; print1(k, ", "))); }

Formula

a(n) <= 2*a(n-1) for n >= 2. - David A. Corneth, Jun 18 2023

A363693 Terms of A363691 with a record number of divisors.

Original entry on oeis.org

3, 9, 21, 81, 105, 225, 945, 5265, 5985, 11025, 16065, 36225, 89505, 105105, 187425, 345345, 389025, 1044225, 2027025, 4189185, 6185025, 20307105, 27776385, 76039425, 107972865, 286711425, 402026625, 1853445825, 2440353825, 3807428625, 5106886785, 9449834625
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2023

Keywords

Comments

Odd numbers k with a record number of divisors such that for all the nontrivial divisors d of k (i.e., divisors that are not 1 or k) the bitwise AND of k and d is not equal to d, or equivalently, the bitwise OR of k and d is not equal to k.
The corresponding record values are 2, 3, 4, 5, 8, 9, 16, 20, 24, 27, 32, 36, 40, 48, ... .

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && DivisorSum[k, Boole[BitOr[#, k] == k] &] == 2, dm = d1; AppendTo[s, k]], {k, 1, kmax, 2}]; s]; seq[10^5]
  • PARI
    lista(kmax) = {my(dm = 0, d1); forstep(k = 1, kmax, 2, d1 = numdiv(k); if(d1 > dm && sumdiv(k, d, bitor(d, k) == k) == 2, dm = d1; print1(k, ", "))); }
Showing 1-2 of 2 results.