cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A372673 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = phi(k*n) / phi(k).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 3, 4, 4, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 4, 4, 6, 1, 1, 3, 2, 4, 3, 6, 4, 1, 2, 2, 4, 5, 4, 6, 8, 6, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 1, 2, 3, 4, 4, 6, 6, 8, 9, 8, 10, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 1, 2, 2, 4, 4, 4, 7, 8, 6, 8, 10, 8, 12, 1, 1, 3, 2, 5, 3, 6, 4, 9, 5, 10, 6, 12, 6
Offset: 1

Views

Author

Seiichi Manyama, May 10 2024

Keywords

Examples

			Square array T(n,k) begins:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...
  2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, ...
  2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, ...
  4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, ...
  2, 4, 3, 4, 2, 6, 2, 4, 3, 4, 2, 6, 2, 4, 3, 4, 2, 6, ...
  6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, ...
  4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, ...
  6, 6, 9, 6, 6, 9, 6, 6, 9, 6, 6, 9, 6, 6, 9, 6, 6, 9, ...
		

Crossrefs

Programs

  • PARI
    T(n, k) = eulerphi(k*n)/eulerphi(k);

A359101 a(n) = phi(5 * n)/4.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 6, 4, 6, 5, 10, 4, 12, 6, 10, 8, 16, 6, 18, 10, 12, 10, 22, 8, 25, 12, 18, 12, 28, 10, 30, 16, 20, 16, 30, 12, 36, 18, 24, 20, 40, 12, 42, 20, 30, 22, 46, 16, 42, 25, 32, 24, 52, 18, 50, 24, 36, 28, 58, 20, 60, 30, 36, 32, 60, 20, 66, 32, 44, 30, 70, 24, 72, 36, 50, 36, 60, 24, 78
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[EulerPhi[5 #]/4 &, 79] (* Michael De Vlieger, Dec 16 2022 *)
  • PARI
    a(n) = eulerphi(5*n)/4;
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(-sum(k=1, N, moebius(5*k)*x^k/(1-x^k)^2))

Formula

G.f.: -Sum_{k>=1} mu(5 * k) * x^k / (1 - x^k)^2, where mu() is the Moebius function (A008683).
From Amiram Eldar, Dec 17 2022: (Start)
Multiplicative with a(5^e) = 5^e, and a(p^e) = (p-1)*p^(e-1) if p != 5.
Dirichlet g.f.: zeta(s-1)/(zeta(s)*(1-1/5^s)).
Sum_{k=1..n} a(k) ~ (25/(8*Pi^2)) * n^2. (End)

A364212 a(n) = (1/(6*n)) * Sum_{d|n} 7^(n/d-1) * phi(7*d).

Original entry on oeis.org

1, 4, 17, 88, 481, 2812, 16808, 102988, 640545, 4035604, 25679569, 164778696, 1064714401, 6920652008, 45214871857, 296722645888, 1954878268801, 12923917765876, 85705978837393, 569944761286648, 3799631728468936, 25388448380261788, 169992219503608177, 1140364472585830196
Offset: 1

Views

Author

Seiichi Manyama, Jul 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 7^(n/#-1)*EulerPhi[7*#]/(6*n) &]; Array[a, 25] (* Amiram Eldar, Jul 14 2023 *)
  • PARI
    a(n) = sumdiv(n, d, 7^(n/d-1)*eulerphi(7*d))/(6*n);

Formula

G.f.: (-1/6) * Sum_{k>0} phi(7*k) * log(1-7*x^k)/(7*k).

A372638 a(n) = (1/6) * Sum_{k=1..n} phi(7*k).

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 19, 23, 29, 33, 43, 47, 59, 66, 74, 82, 98, 104, 122, 130, 144, 154, 176, 184, 204, 216, 234, 248, 276, 284, 314, 330, 350, 366, 394, 406, 442, 460, 484, 500, 540, 554, 596, 616, 640, 662, 708, 724, 773, 793, 825, 849, 901, 919, 959, 987, 1023
Offset: 1

Views

Author

Seiichi Manyama, May 08 2024

Keywords

Crossrefs

Column k=7 of A372619.
Partial sums of A359102.
Cf. A000010.

Programs

  • Mathematica
    Accumulate[Table[EulerPhi[7*n], {n, 1, 60}]]/6 (* Amiram Eldar, May 08 2024 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(7*k))/6;

Formula

a(n) ~ (49/(16*Pi^2)) * n^2. - Amiram Eldar, May 08 2024
Showing 1-4 of 4 results.