A362730 a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} binomial(2*k,k)^2*x^k/k ).
1, 4, 68, 1336, 27972, 607004, 13478072, 304083224, 6941422916, 159882680452, 3708781743068, 86526900550864, 2028273983776440, 47733938489878528, 1127187050415921304, 26694934151138897336, 633813403549444601156, 15082008687681962081088, 359592614152718921447108
Offset: 0
Programs
-
Maple
E(n,x) := series( exp(n*add(binomial(2*k,k)^2*x^k/k, k = 1..20)), x, 21 ): seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
Formula
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 5 and positive integers n and r.
Comments