A359173 Numbers whose square can be expressed as k * A004086(k) with non-palindromic k.
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 200, 220, 252, 300, 330, 400, 403, 440, 500, 504, 550, 600, 660, 700, 770, 800, 816, 880, 900, 990, 1000, 1010, 1100, 1110, 1210, 1310, 1410, 1510, 1610, 1710, 1810, 1910, 2000, 2020, 2120, 2200, 2220, 2320, 2420, 2520, 2620, 2720, 2772
Offset: 1
Examples
a(1) = 10 because 100*1 = 10^2; a(2) = 20: 200*2 = 20^2; a(11) = 110: 1100*11 = 110^2; a(14) = 252: 144*441 = 252^2; a(28) = 816: 768*867 = 816^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Maple
rev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: g:= proc(d,m) local r; r:= rev(d); r <> d and m = d*r end proc: filter:= proc(n) ormap(g, numtheory:-divisors(n^2),n^2) end proc: select(filter, [$1..3000]); # Robert Israel, Dec 23 2022
-
PARI
L=List(); for (k=1, 3*10^6, my (r=fromdigits(Vecrev(digits(k))), s); if (issquare(r*k, &s) && r!=k, if(s<3001, listput(L, s)))); Set(L)
-
Python
from itertools import count, islice from sympy import divisors def A359173_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:any(d*int(str(d)[::-1])==n**2 for d in divisors(n**2,generator=True) if d != n),count(max(startvalue,1))) A359173_list = list(islice(A359173_gen(),30)) # Chai Wah Wu, Dec 19 2022
Comments