A359178 Numbers with a unique smallest prime exponent.
2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117
Offset: 1
Keywords
Examples
2 = 2^1 is a term since it has 1 as a unique smallest exponent. 6 = 2^1 * 3^1 is not a term since it has two primes with the same smallest exponent. 180 = 2^2 * 3^2 * 5^1 is a term since it has 1 as a unique smallest exponent.
Links
- Jens Ahlström, Table of n, a(n) for n = 1..9999
- Wikipedia, Mode (statistics).
Crossrefs
Partitions of this type are counted by A362610.
Programs
-
Mathematica
q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Count[e, Min[e]] == 1]; Select[Range[2, 200], q] (* Amiram Eldar, Jan 08 2023 *)
-
PARI
isok(n) = if (n>1, my(f=factor(n), e = vecmin(f[,2])); #select(x->(x==e), f[,2], 1) == 1); \\ Michel Marcus, Jan 27 2023
-
Python
from sympy import factorint def ok(k): c = sorted(factorint(k).values()) return len(c) == 1 or c[0] != c[1] print([k for k in range(2, 118) if ok(k)])
-
Python
from itertools import count, islice from sympy import factorint def A359178_gen(startvalue=2): # generator of terms >= startvalue return filter(lambda n:(f:=list(factorint(n).values())).count(min(f))==1,count(max(startvalue,2))) A359178_list = list(islice(A359178_gen(),20)) # Chai Wah Wu, Feb 08 2023
Comments