A359184 Numbers k such that 30*k - 1, 30*k + 1, 30*k^2 - 1 and 30*k^2 + 1 are all prime.
1, 14, 118, 232, 538, 720, 1155, 1253, 2821, 3151, 6161, 6238, 6916, 7428, 7827, 9009, 9521, 9933, 10284, 10779, 11661, 12348, 13663, 13811, 14092, 14938, 15273, 16323, 16457, 17116, 17940, 20735, 21931, 22022, 24010, 24311, 24375, 26557, 28293, 29645, 30555, 33880, 34033, 34328, 35797, 36413
Offset: 1
Keywords
Examples
a(2) = 14 is a term because 30*14 - 1 = 419, 30*14 + 1 = 421, 30*14^2 - 1 = 5879, and 30*14^2 + 1 = 5881 are all prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(k -> isprime(30*k-1) and isprime(30*k+1) and isprime(30*k^2-1) and isprime(30*k^2+1), [$1..10^5]);
-
Mathematica
Select[Range[40000], AllTrue[{30*# - 1, 30*# + 1, 30*#^2 - 1, 30*#^2 + 1}, PrimeQ] &] (* Amiram Eldar, Dec 19 2022 *)
Comments