cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359190 a(n) = Sum_{d|n} d * 4^(n/d-1).

Original entry on oeis.org

1, 6, 19, 76, 261, 1074, 4103, 16536, 65593, 262686, 1048587, 4196644, 16777229, 67117098, 268436319, 1073774896, 4294967313, 17180003478, 68719476755, 274878432636, 1099511640197, 4398048608322, 17592186044439, 70368752620104, 281474976711961, 1125899940397134
Offset: 1

Views

Author

Seiichi Manyama, Dec 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 4^(n/#-1)*# &]; Array[a, 26] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d*4^(n/d-1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-4*x^k)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, 4^(k-1)*x^k/(1-x^k)^2))

Formula

G.f.: Sum_{k>=1} k * x^k/(1 - 4 * x^k).
G.f.: Sum_{k>=1} 4^(k-1) * x^k/(1 - x^k)^2.