A359211 a(n) = tau(3*n-1)/2, where tau(n) = number of divisors of n, cf. A000005.
1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 4, 1, 2, 2, 3, 1, 2, 2, 5, 1, 2, 1, 3, 2, 3, 1, 4, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 1, 6, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 5, 1, 4, 2, 3, 1, 2, 1, 6, 2, 2, 2, 3, 2, 2, 2, 6, 1, 4, 1, 3, 1, 3, 3, 4, 1, 2, 1, 6, 1, 4, 1
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := DivisorSigma[0, 3*n-1]/2; Array[a, 100] (* Amiram Eldar, Dec 21 2022 *)
-
PARI
a(n) = numdiv(3*n-1)/2;
-
PARI
a(n) = sumdiv(3*n-1, d, d%3==1);
-
PARI
a(n) = sumdiv(3*n-1, d, d%3==2);
-
PARI
my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(3*k-1))))
-
PARI
my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(3*k-2))))
Formula
G.f.: Sum_{k>0} x^k/(1 - x^(3*k-1)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(3*k-2)).
Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 1 + 2*log(3))*n/3 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 26 2022
Comments