A359219 Starting numbers that require more iterations of the map x->A359194(x) (binary complement of 3n) to reach 0 than any smaller number.
0, 1, 2, 3, 4, 9, 11, 12, 17, 23, 28, 33, 74, 86, 180, 227, 350, 821, 3822, 4187, 5561, 6380, 6398, 22174, 22246, 26494, 34859, 49827, 70772, 103721, 104282, 204953, 213884, 225095, 407354, 425720
Offset: 1
Examples
3 is a term because it requires 11 iterations to reach 0, which is more than any starting number less than 3. 0: (0) -- 0 terms 1: (1, 0) -- 1 term 2: (2, 1, 0) -- 2 terms 3: (3, 6, 13, 24, 55, 90, 241, 300, 123, 142, 85, 0) -- 11 terms.
Links
- Joshua Searle, Collatz-inspired sequences
Crossrefs
Programs
-
Python
from itertools import count, islice def f(n): return 1 if n == 0 else (m:=3*n)^((1 << m.bit_length())-1) def iters(n): i, fi = 0, n while fi != 0: i, fi = i+1, f(fi) return i def agen(): # generator of terms record = -1 for m in count(0): v = iters(m) if v > record: yield m; record = v print(list(islice(agen(), 18))) # Michael S. Branicky, Dec 21 2022
Extensions
a(27)-a(36) from Tom Duff (SeqFan mailing list, Dec 19 2022)
Comments