A359232 a(n) is the smallest centered square number divisible by exactly n centered square numbers.
1, 5, 25, 925, 1625, 1105, 47125, 350285, 493025, 3572465, 47074105, 13818025, 4109345825, 171921425, 294346585, 130334225125, 190608050165, 2687125303525, 2406144489125, 5821530534625, 49723952067725, 1500939251825, 665571884367325, 8362509238504525, 1344402738869125
Offset: 1
Keywords
Examples
a(5) = 1625, because 1625 is a centered square number that has 5 centered square divisors {1, 5, 13, 25, 1625} and this is the smallest such number.
Links
- Eric Weisstein's World of Mathematics, Centered Square Number
- Index entries for sequences related to divisors of numbers
Programs
-
Magma
a := [ 0 : n in [ 1 .. 17 ] ]; for k in [ 0 .. 310000 ] do c := 2*k*(k+1)+1; D := Divisors(c); n := 0; for d in D do if IsSquare(2*d - 1) then n +:= 1; end if; end for; if a[n] eq 0 then a[n] := c; end if; end for; a; // Jon E. Schoenfield, Dec 24 2022
-
PARI
a(n) = for(k=0, oo, my(t=2*k*(k+1)+1); if(sumdiv(t, d, issquare(2*d-1)) == n, return(t))); \\ Daniel Suteu, Dec 31 2022
Extensions
a(10)-a(22) from Jon E. Schoenfield, Dec 24 2022
a(23)-a(25) confirmed by Daniel Suteu, Dec 31 2022
Comments