A359239 Number of divisors of 3*n-2 of form 3*k+2.
0, 1, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 4, 0, 2, 0, 2, 2, 2, 0, 3, 0, 4, 0, 2, 0, 2, 2, 4, 0, 2, 0, 4, 0, 2, 0, 4, 2, 2, 1, 2, 0, 4, 0, 4, 0, 2, 2, 2, 0, 4, 0, 6, 0, 2, 0, 2, 2, 2, 0, 4, 2, 4, 0, 3, 0, 2, 2, 4, 0, 2, 0, 6, 0, 2, 0, 4, 2, 4, 0, 2, 0, 4, 2, 4, 0, 2, 2, 2
Offset: 1
Programs
-
Mathematica
Table[Count[Divisors[3 n-2],?(IntegerQ[(#-2)/3]&)],{n,100}] (* _Harvey P. Dale, Apr 23 2023 *) a[n_] := DivisorSum[3*n-2, 1 &, Mod[#, 3] == 2 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
-
PARI
a(n) = sumdiv(3*n-2, d, d%3==2);
-
PARI
my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(3*k-1)))))
Formula
a(n) = A001822(3*n-2).
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(3*k-1)).