A359250 Irregular triangle read by rows where T(n,k) is the coefficient of y^k in polynomial P(n) defined by P(2n) = P(n) and P(2n+1) = y*P(n) + P(n+1) starting P(0) = 0, P(1) = 1.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 3, 1, 3, 3, 1, 2, 1, 3, 4, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 3, 3, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 4, 1, 4, 4
Offset: 0
Examples
Triangle begins: k=0 1 2 n=0: (empty) n=1: 1, n=2: 1, n=3: 1, 1, n=4: 1, n=5: 1, 2, n=6: 1, 1, n=7: 1, 1, 1, n=8: 1, n=9: 1, 3,
Links
- Kevin Ryde, Table of n, a(n) for rows 0..2048, flattened
- Kevin Ryde, PARI/GP Code and Notes
- Thomas Scheuerle, Scatter plot a(n) for n = 1 to 114689. This is in T(n,k) the range of n = 1 to 2^14. It looks a bit like narrow and tall fir trees like you could see in the Schwarzwald region.
Crossrefs
Programs
-
MATLAB
function a = A359250( max_n ) ac = cell(1,1); ac{1} = [1]; for n = 2:max_n m = floor(n/2); if 2*m == n ac{n} = ac{m}; else ac{n} = [ac{m+1} zeros(1,(length(ac{m})+1)-length(ac{m+1}))] ... + [0 ac{m}]; end end a = cell2mat(ac); end % Thomas Scheuerle, Dec 28 2022
-
PARI
\\ See links.
Formula
G.f.: Sum_{n>=0} P(n)*x^n = x * Product_{e>=0} 1 + x^(2^e) + y*x^(2^(e+1)).
Comments