A359271 Number of odd digits necessary to write all nonnegative n-digit integers.
5, 95, 1400, 18500, 230000, 2750000, 32000000, 365000000, 4100000000, 45500000000, 500000000000, 5450000000000, 59000000000000, 635000000000000, 6800000000000000, 72500000000000000, 770000000000000000, 8150000000000000000
Offset: 1
Examples
To write the integers from 10 up to 99, each of the digits 1, 3, 5, 7 and 9, must be used 19 times, hence a(2) = 19*5 = 95.
Links
- Index entries for linear recurrences with constant coefficients, signature (20,-100).
Programs
-
Maple
seq(5 * (9*n+1) * 10^(n-2), n=1..18);
-
Mathematica
a[n_] := 5*(9*n + 1)*10^(n - 2); Array[a, 20] (* Amiram Eldar, Dec 23 2022 *)
Formula
a(n) = 5 * (9*n+1) * 10^(n-2).
From Stefano Spezia, Dec 24 2022: (Start)
O.g.f.: 5*x*(1 - x)/(1 - 10*x)^2.
E.g.f.: (exp(10*x)*(1 + 90*x) - 1)/20. (End)