A359299 Array T(n, k) read by antidiagonals: for n >= 0 and k >= 0, row n lists the positive integers m such that m + k is prime or 1, and m + h, for 0 <= h < k, is not prime.
1, 2, 4, 3, 6, 9, 5, 10, 15, 8, 7, 12, 21, 14, 25, 11, 16, 27, 20, 33, 24, 13, 18, 35, 26, 49, 32, 91, 17, 22, 39, 34, 55, 48, 121, 90, 19, 28, 45, 38, 63, 54, 143, 120, 119, 23, 30, 51, 44, 75, 62, 185, 142, 141, 118, 29, 36, 57, 50, 85, 74, 205, 184, 183
Offset: 1
Examples
Corner: 1 2 3 5 7 11 13 17 19 23 29 4 6 10 12 16 18 22 28 30 36 40 9 15 21 27 35 39 45 51 57 65 69 8 14 20 26 34 38 44 50 56 64 68 25 33 49 55 63 75 85 93 123 133 145 24 32 48 54 62 74 84 92 122 132 144 Row 0 includes 19 because 19 is prime, and 19 - 19 = 0. Row 1 includes 10 because the nearest prime up from 10 is 11, and 11 - 10 = 1.
Programs
-
Mathematica
rows = 15; row[0] = Join[{1}, Map[Prime, Range[250]]]; Table[ row[z] = Map[#[[1]] &, Select[Map[{#, Apply[And, Join[{MemberQ[row[0], # + z]}, Table[! MemberQ[row[0], # + k], {k, 0, z - 1}]]]} &, Range[Max[row[z - 1]]]], #[[2]] &]], {z, rows}]; Table[row[z], {z, 0, rows}] // ColumnForm (* A359299 array *) t[n_, k_] := row[n - 1][[k]] u = Table[t[n - k + 1, k], {n, 15}, {k, n, 1, -1}] // Flatten (* A359299 sequence *) (* Peter J. C. Moses Dec 18 2022 *)
Comments