A359298 Array T(n, k) read by antidiagonals: for n >= 0 and k >= 0, row n lists the positive integers m such that m - k is prime or 1, and m - h, for 0 <= h < k, is not prime.
1, 2, 4, 3, 6, 9, 5, 8, 15, 10, 7, 12, 21, 16, 27, 11, 14, 25, 22, 35, 28, 13, 18, 33, 26, 51, 36, 95, 17, 20, 39, 34, 57, 52, 119, 96, 19, 24, 45, 40, 65, 58, 145, 120, 121, 23, 30, 49, 46, 77, 66, 187, 146, 147, 122, 29, 32, 55, 50, 87, 78, 205, 188, 189
Offset: 1
Examples
Corner: 1 2 3 5 7 11 13 17 19 23 29 4 6 8 12 14 18 20 24 30 32 38 9 15 21 25 33 39 45 49 55 63 69 10 16 22 26 34 40 46 50 56 64 70 27 35 51 57 65 77 87 93 117 135 143 28 36 52 58 66 78 88 94 118 136 144 Row 0 includes 19 because 19 is prime, and 19 - 19 = 0. Row 1 includes 8 because the nearest prime down from 8 is 7, and 8 - 7 = 1.
Programs
-
Mathematica
rows = 15; row[0] = Join[{1}, Map[Prime, Range[250]]]; Table[row[z] = Map[#[[1]] &, Select[Map[{#, Apply[And, Join[{MemberQ[row[0], # - z]}, Table[! MemberQ[row[0], # - k], {k, 0, z - 1}]]]} &, Range[Max[row[z - 1]]]], #[[2]] &]], {z, rows}]; Table[row[z], {z, 0, rows}] // ColumnForm (* A359298 array *) t[n_, k_] := row[n - 1][[k]]; u = Table[t[n - k + 1, k], {n, 15}, {k, n, 1, -1}] // Flatten (* A359298 sequence *) (* Peter J. C. Moses Dec 18 2022 *)
Comments