A359310 Cyclic cubic conductors associated with closed Andozhskii groups.
59031, 209853, 247437, 263017, 271737, 329841, 377923, 407851, 412909, 415597, 416241, 416727, 462573, 474561, 487921, 493839, 547353, 586963, 612747, 613711, 615663, 622063, 648427, 651829, 689347, 690631, 753787, 796779, 811069, 818217, 869611, 914263, 915439, 922167, 936747, 977409, 997087
Offset: 1
Examples
Cyclic cubic number fields with conductors 59031, respectively 209853, respectively 247437, 263017, 271737, elementary tricyclic 3-class group (3,3,3), and harmonically balanced capitulation have been discovered by Daniel Constantin Mayer on 13 July 2022, respectively 15 July 2022, respectively 25 December 2022. Each of them belongs to a quartet of non-isomorphic fields sharing a common conductor, such that the other three fields have 3-class group (3,3) and capitulation type (1243), called G.16. The conductors bigger than 300000 were computed by Bill Allombert at the University of Bordeaux with PARI/GP.
Links
- Bill Allombert, Plateforme Fédérative pour la Recherche en Informatique et Mathématique (PlaFRIM)
- Bill Allombert and Daniel Constantin Mayer, Cyclic cubic number fields with harmonically balanced capitulation, arXiv:2307.13898 [math.NT], 2023.
- Bill Allombert and Daniel Constantin Mayer, Corps de nombres cubiques cycliques ayant une capitulation harmonieusement équilibrée, Publications mathématiques de Besançon. Algèbre et théorie des nombres (2025), pp. 21-46. See p. 23.
- I. V. Andozhskii and V. M. Tsvetkov, On a series of finite closed p-groups, Izv. Akad. Nauk SSSR, Ser. Mat. 38 (1974), no. 2, 278-290.
- I. V. Andozhskii, On some classes of closed pro-p-groups, Izv. Akad. Nauk SSSR, Ser. Mat. 39 (1975), no. 4, 707-738.
- Daniel Constantin Mayer, Theoretical and experimental approach to p-class field towers of cyclic cubic number fields, Four plenary lectures and exercises, Les Sixièmes Journées d'Algèbre, Théorie des Nombres et leurs Applications (JATNA), 25-26 November 2022, Oujda, Morocco, pp. 83-86.
Comments