A359337 Irregular triangle read by rows: the n-th row gives the exponents of the powers of x corresponding to the maximal coefficient of the product x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).
0, 2, 4, 5, 7, 12, 16, 17, 22, 24, 32, 42, 53, 65, 79, 96, 114, 134, 155, 180, 205, 233, 263, 294, 329, 364, 403, 442, 485, 529, 576, 625, 676, 729, 785, 842, 902, 964, 1029, 1097, 1167, 1238, 1313, 1390, 1469, 1552, 1636, 1723, 1813, 1904, 1999, 2096, 2195, 2298
Offset: 0
Examples
The irregular triangle begins: 0; 2; 4, 5; 7; 12; 16, 17; 22, 24; 32; 42; 53; 65; ...
Programs
-
Mathematica
b[n_]:=CoefficientList[Product[Sum[x^Prime[i],{i,k}],{k,n}],x]; Table[Position[b[n],Max[b[n]]]-1,{n,0,50}]//Flatten
Comments