A359390 Sequence lists the numbers k such that bottom entry is an integer in the ratio d(i+1)/d(i) triangle of the elements in the divisors of n, where d(1) < d(2) < ... < d(q) denote the divisors of k.
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 100, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193
Offset: 1
Keywords
Examples
36 is a term because the triangle of the elements d(i+1)/d(i) has bottom entry 1: [1, 2, 3, 4, 6, 9, 12, 18, 36] [2, 3/2, 4/3, 3/2, 3/2, 4/3, 3/2, 2] [3/4, 8/9, 9/8, 1, 8/9, 9/8, 4/3] [32/27, 81/64, 8/9, 8/9, 81/64, 32/27] [2187/2048, 512/729, 1, 729/512, 2048/2187] [1048576/1594323, 729/512, 729/512, 1048576/1594323] [1162261467/536870912, 1, 536870912/1162261467] [536870912/1162261467, 536870912/1162261467] [1]. 6 is not a term because the triangle of the elements d(i+1)/d(i) has bottom entry 16/9. [1, 2, 3, 6] [2, 3/2, 2] [3/4, 4/3] [16/9]
Crossrefs
Programs
-
Mathematica
Lst={}; Table[d=Divisors[n]; While[Length[d]>1,d=Ratios[d]]; If[d[[1]]==Floor[d[[1]]],AppendTo[Lst,n]],{n,300}]; Lst
-
PARI
isA359390(n) = my(L = factor(n), w = #L~, v=divisors(n), q=#v); for(i_d=1, q-1, for(i_p=1, w, L[i_p,2] += binomial(q-1,i_d-1) * (-1)^(q-i_d) * valuation(v[i_d], L[i_p,1]))); for(i_p=1, w, if(L[i_p,2]<0, return(0))); return(1) \\ Jianing Song, Jan 22 2023, based on the formula provided by Kevin Ryde
Comments