cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359399 a(1) = 1; a(n) = Sum_{k=2..n} k * a(floor(n/k)).

Original entry on oeis.org

1, 2, 5, 11, 16, 31, 38, 62, 80, 105, 116, 194, 207, 242, 287, 383, 400, 526, 545, 675, 738, 793, 816, 1200, 1250, 1315, 1423, 1605, 1634, 1979, 2010, 2394, 2493, 2578, 2683, 3475, 3512, 3607, 3724, 4364, 4405, 4888, 4931, 5217, 5577, 5692, 5739, 7563, 7661, 8011
Offset: 1

Views

Author

Seiichi Manyama, Mar 31 2023

Keywords

Crossrefs

Cf. A022825.

Programs

  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A359399(n):
        if n <= 1:
            return 1
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2*(j2-1)-j*(j-1)>>1)*A359399(k1)
            j, k1 = j2, n//j2
        return c+(n*(n+1)-(j-1)*j>>1) # Chai Wah Wu, Mar 31 2023

Formula

G.f. A(x) satisfies A(x) = x + (1/(1 - x)) * Sum_{k>=2} k * (1 - x^k) * A(x^k).