A359445 Numbers k such that the sums (with multiplicity) of prime factors of k and k+1 are both squares.
255, 290, 323, 578, 1484, 2219, 2418, 2491, 4370, 4706, 5243, 6075, 7139, 7930, 9378, 10082, 10554, 10603, 12716, 15872, 16739, 18146, 18938, 22424, 22842, 25227, 25283, 25959, 26910, 28364, 28448, 30255, 33669, 33698, 34316, 34317, 38895, 40179, 41261, 43343, 43999, 47384, 60400, 62695, 64970
Offset: 1
Keywords
Examples
a(3) = 323 is a term because 323 = 17*19 with 17+19 = 36 = 6^2 and 324 = 2^2*3^4 with 2*2 + 4*3 = 16 = 4^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..750
Programs
-
Maple
A:= select(proc(n) local t; issqr(add(t[1]*t[2], t=ifactors(n)[2])) end proc, {$1..10^5}): B:= A intersect map(`-`,A,1): sort(convert(B,list));
-
Mathematica
Module[{nn=65000,sq},sq=Table[If[IntegerQ[Sqrt[Total[Times@@@FactorInteger[n]]]],1,0],{n,nn}];SequencePosition[sq,{1,1}]][[;;,1]] (* Harvey P. Dale, Apr 12 2024 *)
Comments