cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359449 Positive integers in which the sum of the k-th powers of their digits is a prime number for k = 1, 2, 3, 4, 5, and 6 but not for k=7.

Original entry on oeis.org

223, 232, 322, 1349, 1394, 1439, 1493, 1934, 1943, 2023, 2032, 2203, 2230, 2302, 2320, 3022, 3149, 3194, 3202, 3220, 3419, 3491, 3914, 3941, 4139, 4193, 4319, 4391, 4913, 4931, 9134, 9143, 9314, 9341, 9413, 9431, 10349, 10394, 10439, 10493, 10934, 10943, 13049, 13094, 13409, 13490, 13904, 13940
Offset: 1

Views

Author

José Hernández, Jan 02 2023

Keywords

Examples

			223 belongs to this sequence because 2+2+3=7, 2^2+2^2+3^2=17, 2^3+2^3+3^3=43, 2^4+2^4+3^4=113, 2^5+2^5+3^5=307, and 2^6+2^6+3^6=857 are prime numbers whereas 2^7+2^7+3^7 is a composite number.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,t,k;
      L:= convert(n,base,10);
      andmap(isprime, [seq(add(t^k,t=L),k=1..6)]) and not isprime(add(t^7,t=L))
    end proc:
    select(filter, [$1..20000]); # Robert Israel, Jan 03 2023
  • Mathematica
    For[a = 0, a <= 9, a++,
     For[b = 0, b <= 9, b++,
     For[c = 0, c <= 9, c++,
     For[d = 0, d <= 9, d++,
       If[PrimeQ[a + b + c + d] == True &&
          PrimeQ[a^2 + b^2 + c^2 + d^2] == True &&
          PrimeQ[a^3 + b^3 + c^3 + d^3] == True &&
          PrimeQ[a^4 + b^4 + c^4 + d^4] == True &&
          PrimeQ[a^5 + b^5 + c^5 + d^5] == True &&
          PrimeQ[a^6 + b^6 + c^6 + d^6] == True &&
          PrimeQ[a^7 + b^7 + c^7 + d^7] == False, Print[a, b, c, d]]]]]]
    (* This code outputs all the terms of the sequence in the interval [1,10^4]. *)
  • PARI
    isok(n) = my(d=digits(n)); for (i=1, 6, if (!isprime(sum(k=1,#d, d[k]^i)), return(0))); !isprime(sum(k=1,#d, d[k]^7)); \\ Michel Marcus, Jan 02 2023