cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359463 Coefficient a(n) of x^n in power series A(x), n >= 0, such that A(x) = Sum_{n=-oo..+oo} (-x*A(x))^n * (1 - (-x*A(x))^(n-1))^n.

Original entry on oeis.org

1, 1, 2, 6, 20, 69, 245, 896, 3362, 12869, 50024, 196896, 783205, 3143713, 12717532, 51798089, 212233756, 874193355, 3617797596, 15035379576, 62724649455, 262579756558, 1102680011825, 4643936681122, 19609621413193, 83005706694022, 352145760387515, 1497067760933244
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 69*x^5 + 245*x^6 + 896*x^7 + 3362*x^8 + 12869*x^9 + 50024*x^10 + 196896*x^11 + 783205*x^12 + ...
SPECIFIC VALUES.
A(x) = 2 at x = 0.22210374835192555734961892166866769267669905135315...
A(1/5) = 1.45174689360673617561694352881716190508117725206270...
A(1/6) = 1.28852385900727494844427701605174847197781970881818...
		

Crossrefs

Cf. A290003.

Programs

  • PARI
    {a(n) = my(A=1);
    A = (-1/x)*serreverse(-x/sum(m=-n-1,n+1, (x - x^m +x*O(x^(n+1)))^m )); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); for(i=1,n,
    A = sum(m=-n,n, (-x*A)^m * (1 - (-x*A)^(m-1) +x*O(x^n))^m)); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) A(x) = Sum_{n=-oo..+oo} (-x*A(x))^n * (1 - (-x*A(x))^(n-1))^n.
(2) A(x) = Sum_{n=-oo..+oo} (-x*A(x))^n * (1 - (-x*A(x))^(n-1))^(n+1).
(3) A(x) = Sum_{n=-oo..+oo} (x*A(x))^(2*n+1) * (1 - (-x*A(x))^n)^n.
(4) A(x) = Sum_{n=-oo..+oo} (x*A(x))^(n^2) / (1 - (-x*A(x))^(n+1))^(n+1).
(5) x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * (x*A(x))^(n*(n-1)) / (1 - (-x*A(x))^(n+1))^(n-1).
(6) -1/x = Sum_{n=-oo..+oo} (-x*A(x))^n * (1 - (-x*A(x))^n)^(n+1).
(7) -1/x = Sum_{n=-oo..+oo} (-x*A(x))^n * (1 - (-x*A(x))^n)^(n+2).
(8) 1/x = Sum_{n=-oo..+oo} (x*A(x))^(2*n) * (1 - (-x*A(x))^n)^n.
(9) 0 = Sum_{n=-oo..+oo} (-x*A(x))^n * (1 - (-x*A(x))^n)^n.
(10) 0 = Sum_{n=-oo..+oo} (x*A(x))^(2*n) * (1 - (-x*A(x))^n)^(n+1).
(11) A(-x/G(x)) = G(x) where G(x) = Sum_{n=-oo..+oo} (x - x^n)^n is the g.f. of A290003.
(12) A(x) = (-1/x) * Series_Reversion( -x / Sum_{n=-oo..+oo} (x - x^n)^n ).
a(n) ~ c * d^n / n^(3/2), where d = 4.4911010651615255101195452998052055698... and c = 0.53507007927413038001531299966030791... - Vaclav Kotesovec, Mar 14 2023