A359494 Zeroless numbers k which can be written as a product of the powers whose base is a digit of k and whose exponent is a nonnegative integer.
1, 2, 3, 4, 5, 6, 7, 8, 9, 25, 32, 36, 64, 125, 128, 135, 175, 216, 243, 256, 324, 375, 384, 432, 512, 625, 672, 729, 735, 784, 864, 875, 1296, 1372, 1715, 1764, 1792, 2592, 2744, 2916, 3125, 3375, 3456, 3645, 3675, 4375, 5832, 6144, 6272, 6912, 7776, 8192, 8575, 9216
Offset: 1
Examples
672 is in the sequence via 672 = 6^2 * 7^1 * 2^4. 2592 is in the sequence via 2592 = 2^5 * 5^0 * 9^2 * 2^0.
Links
- Felix Huber, Table of n, a(n) for n = 1..11055
Programs
-
PARI
is(n) = {if(n <= 1, return(n == 1)); my(d = Set(digits(n))); if(d[1] == 0, return(0)); d = setminus(d, Set(1)); forvec(x = vector(#d, i, [0, valuation(n, d[i])]), c = prod(i = 1, #d, d[i]^x[i]); if(c == n, return(1) ) ); 0 } \\ David A. Corneth, Jan 05 2023
Formula
Integers k = (x_1)^(m_1) * ... * (x_i)^(m_i) where x_j is the j-th digit of zeroless k and m_j is a nonnegative integer and 1 <= j <= i.
Comments