A359495 Sum of positions of 1's in binary expansion minus sum of positions of 1's in reversed binary expansion, where positions in a sequence are read starting with 1 from the left.
0, 0, -1, 0, -2, 0, -2, 0, -3, 0, -2, 1, -4, -1, -3, 0, -4, 0, -2, 2, -4, 0, -2, 2, -6, -2, -4, 0, -6, -2, -4, 0, -5, 0, -2, 3, -4, 1, -1, 4, -6, -1, -3, 2, -5, 0, -2, 3, -8, -3, -5, 0, -7, -2, -4, 1, -9, -4, -6, -1, -8, -3, -5, 0, -6, 0, -2, 4, -4, 2, 0, 6
Offset: 0
Examples
The binary expansion of 158 is (1,0,0,1,1,1,1,0), with positions of 1's {1,4,5,6,7} with sum 23, reversed {2,3,4,5,8} with sum 22, so a(158) = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..16383
Crossrefs
Programs
-
Maple
a:= n-> (l-> add(i*(l[-i]-l[i]), i=1..nops(l)))(Bits[Split](n)): seq(a(n), n=0..127); # Alois P. Heinz, Jan 09 2023
-
Mathematica
sap[q_]:=Sum[q[[i]]*(2i-Length[q]-1),{i,Length[q]}]; Table[sap[IntegerDigits[n,2]],{n,0,100}]
-
Python
def A359495(n): k = n.bit_length()-1 return sum((i<<1)-k for i, j in enumerate(bin(n)[2:]) if j=='1') # Chai Wah Wu, Jan 09 2023
Comments