A359527 Nonnegative numbers k such that if 2^i and 2^j appear in the binary expansion of k, then 2^(i OR j) also appears in the binary expansion of k (where OR denotes the bitwise OR operator).
0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 32, 33, 34, 35, 48, 49, 50, 51, 64, 65, 68, 69, 80, 81, 84, 85, 128, 129, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 152, 153, 160, 161, 162, 163, 164, 165, 168, 169, 170, 171
Offset: 1
Examples
The first terms, alongside the corresponding union-closed sets, are: n a(n) Union-closed set ---- ----- ---------------------- 1 0 {} 2 1 {{}} 3 2 {{0}} 4 3 {{}, {0}} 5 4 {{1}} 6 5 {{}, {1}} 7 8 {{0, 1}} 8 9 {{}, {0, 1}} 9 10 {{0}, {0, 1}} 10 11 {{}, {0}, {0, 1}} 11 12 {{1}, {0, 1}} 12 13 {{}, {1}, {0, 1}} 13 14 {{0}, {1}, {0, 1}} 14 15 {{}, {0}, {1}, {0, 1}} 15 16 {{2}} 16 17 {{}, {2}} 17 32 {{0, 2}}
Links
Programs
-
PARI
is(n) = { my (b=vector(hammingweight(n))); for (i=1, #b, n -= 2^b[i] = valuation(n,2)); setbinop(bitor, b)==b }
Comments