A359528 Nonnegative numbers k such that if 2^i and 2^j appear in the binary expansion of k, then 2^(i AND j) also appears in the binary expansion of k (where AND denotes the bitwise AND operator).
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 33, 34, 35, 37, 39, 42, 43, 47, 48, 49, 51, 53, 55, 59, 63, 64, 65, 67, 68, 69, 71, 76, 77, 79, 80, 81, 83, 85, 87, 93, 95, 112, 113, 115, 117, 119, 127, 128, 129, 130, 131
Offset: 1
Examples
The first terms, alongside the corresponding intersection-closed sets, are: n a(n) Intersection-closed set ---- ----- ----------------------- 0 0 {} 1 1 {{}} 2 2 {{0}} 3 3 {{}, {0}} 4 4 {{1}} 5 5 {{}, {1}} 6 7 {{}, {0}, {1}} 7 8 {{0, 1}} 8 9 {{}, {0, 1}} 9 10 {{0}, {0, 1}} 10 11 {{}, {0}, {0, 1}} 11 12 {{1}, {0, 1}} 12 13 {{}, {1}, {0, 1}} 13 15 {{}, {0}, {1}, {0, 1}} 14 16 {{2}} 15 17 {{}, {2}} 16 19 {{}, {0}, {2}} 17 21 {{}, {1}, {2}}
Programs
-
PARI
is(n) = { my (b=vector(hammingweight(n))); for (i=1, #b, n -= 2^b[i] = valuation(n,2)); setbinop(bitand, b)==b }
Comments