cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359547 Numbers such that they are not divisible by p^p for any prime p, but for some k-th arithmetic derivative (k >= 1) of n such a factor exists.

Original entry on oeis.org

15, 26, 35, 39, 45, 50, 51, 55, 63, 69, 74, 75, 86, 87, 90, 91, 95, 99, 102, 106, 110, 111, 115, 117, 119, 122, 123, 125, 133, 134, 141, 143, 146, 147, 153, 155, 158, 159, 169, 171, 175, 178, 183, 187, 190, 194, 195, 198, 203, 207, 210, 213, 215, 218, 219, 225, 226, 230, 234, 235, 245, 247, 249, 250
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2023

Keywords

Examples

			15 = 3*5 is present, as although it itself is not in A100716, its arithmetic derivative 15' = 8 is there.
26 = 2*13 is present, as although neither 26 nor 26' = 15 are in A100716, its second derivative = 26'' = 15' = 8 is there.
		

Crossrefs

Intersection of A048103 and A099309. Setwise difference A099309 \ A100716.
Cf. A003415, A327934 (subsequence), A359545, A359546 (characteristic function).

Programs

  • Mathematica
    f[n_] := f[n] = Which[Abs@ n < 2, 0, PrimeQ[n], 1, True, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; g[n_] := And[n > 0, AnyTrue[FactorInteger[n], #2 >= #1 & @@ # &]]; w = {}; nn = 2^16; k = 1; While[Set[m, #^#] <= nn &[Prime[k]], AppendTo[w, m]; k++]; Reap[Do[If[! g[n], If[g@ NestWhile[f, n, And[! Divisible[#, 4], FreeQ[w, #]] &], Sow[n] ] ], {n, 2, nn}] ][[-1, -1]]
    (* or, generate up to 7852685 terms of this sequence from the bitmap by setting y to a number not exceeding 4096: *)
    With[{img = https://oeis.org/A359547/a359547.png, y = 2}, Map[4096 (#1 - 1) + #2 - 1 & @@ # &, Position[ImageData[img][[1 ;; y, All]], 0.]] ] (* Michael De Vlieger, Jan 23 2023 *)
  • PARI
    isA359547(n) = A359546(n);