A359561 a(n) is the determinant of an n X n Hermitian Toeplitz matrix whose first row consists of n, (n-1)*i, (n-2)*i, ..., 3*i, 2*i, i, where i denotes the imaginary unit.
1, 1, 3, 0, -256, -5000, -46656, 941192, 67108864, 2066242608, 24000000000, -1659995174464, -142657607172096, -5964309791355136, -76196618232397824, 11210083593750000000, 1180591620717411303424, 62286325600853591655680, 839390038939659468275712, -213252813410122222659258368
Offset: 0
Keywords
Examples
a(3) = 0: [ 3, 2*i, i; -2*i, 3, 2*i; -i, -2*i, 3 ]
Links
- Wikipedia, Toeplitz Matrix
Crossrefs
Programs
-
Maple
A359561 := proc(n) local T,c,r ; if n =0 then return 1 ; end if; T := Matrix(n,n) ; T[1,1] := n ; for c from 2 to n do T[1,c] := (n-c+1)*I ; end do: for r from 2 to n do for c from 1 to r-1 do T[r,c] := -T[c,r] ; end do: for c from r to n do T[r,c] := T[r-1,c-1] ; end do: end do: LinearAlgebra[Determinant](T) ; simplify(%) ; end proc: seq(A359561(n),n=0..25) ; # R. J. Mathar, Jan 31 2023
-
Mathematica
Join[{1},Table[Det[ToeplitzMatrix[Join[{n},I Reverse[Range[n-1]]]]],{n,19}]]
-
Python
from sympy import Matrix, I def A359561(n): return Matrix(n,n,[(n+j-i if i>j else j-i-n) if i!=j else n*I for i in range(n) for j in range(n)]).det()*(1,-I,-1,I)[n&3] # Chai Wah Wu, Jan 25 2023