cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A359594 Multiplicative with a(p^e) = p^e if p divides e, 1 otherwise.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 27, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 27, 1, 1, 1, 1, 1, 4, 1, 1, 1, 64, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 108
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2023

Keywords

Comments

Each term a(n) divides both A085731(n) and A327939(n).

Crossrefs

Cf. A359593.
Cf. also A085731, A327939.

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, p], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 09 2023 *)
  • PARI
    A359594(n) = { my(f = factor(n)); prod(k=1, #f~, f[k, 1]^(f[k,2]*!(f[k, 2]%f[k, 1]))); };
    
  • Python
    from math import prod
    from sympy import factorint
    def A359594(n): return prod(p**e for p, e in factorint(n).items() if not e%p) # Chai Wah Wu, Jan 10 2023

Formula

a(n) = n / A359593(n).
Showing 1-1 of 1 results.