cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359644 Number of numbers <= 10^n that are products of 5 distinct primes.

Original entry on oeis.org

0, 0, 0, 24, 910, 18387, 286758, 3884936, 48396263, 571221133, 6499261245, 72047682376, 783561421371, 8399470576016, 89038389261794, 935562667202846, 9761003371437806, 101253973351371824, 1045354835981786609
Offset: 1

Views

Author

Peter Dolland, Jan 09 2023

Keywords

Examples

			a(4) = 24 = #{2310, 2730, 3570, 3990, 4290, 4830, 5610, 6006, 6090, 6270, 6510, 6630, 7410, 7590, 7770, 7854, 8610, 8778, 8970, 9030, 9282, 9570, 9690, 9870}
		

Crossrefs

Programs

  • PARI
    a(n) = my(N=10^n); (f(m,p,k,j=1)=my(s=sqrtnint(N\m, k), count=0); if(k==2, forprime(q=p, s, count += primepi(N\(m*q)) - j; j+=1); return(count)); forprime(q=p, s, count += f(m*q, q+1, k-1, j+1); j+=1); count); f(1, 2, 5); \\ Daniel Suteu, Jan 10 2023

Extensions

a(14) from Daniel Suteu, Jan 10 2023
a(15)-a(19) from Henri Lifchitz, Feb 01 2025

A359645 Number of numbers <= 10^n that are products of 6 distinct primes.

Original entry on oeis.org

0, 0, 0, 0, 20, 1235, 32396, 605939, 9446284, 131733664, 1706815354, 21008871506, 249145286508, 2873325692759, 32433194803107, 359960491516138, 3941261642520039, 42679704453671033, 457980431402674541
Offset: 1

Views

Author

Peter Dolland, Jan 09 2023

Keywords

Examples

			a(5) = 20 = #{30030, 39270, 43890, 46410, 51870, 53130, 62790, 66990, 67830, 71610, 72930, 79170, 81510, 82110, 84630, 85470, 91770, 94710, 98670, 99330}.
		

Crossrefs

Programs

  • PARI
    a(n) = my(N=10^n); (f(m, p, k, j=1)=my(s=sqrtnint(N\m, k), count=0); if(k==2, forprime(q=p, s, count += primepi(N\(m*q)) - j; j+=1); return(count)); forprime(q=p, s, count += f(m*q, q+1, k-1, j+1); j+=1); count); f(1, 2, 6); \\ Daniel Suteu, Jan 11 2023

Extensions

a(13)-a(14) from Daniel Suteu, Jan 11 2023
a(15)-a(19) from Henri Lifchitz, Feb 01 2025
Showing 1-2 of 2 results.