cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359647 a(n) = [x^n] hypergeom([1/4, 3/4], [2], 64*x). The central terms of the Motzkin triangle A359364 without zeros.

Original entry on oeis.org

1, 6, 140, 4620, 180180, 7759752, 356948592, 17210021400, 859544957700, 44123307828600, 2315270298060720, 123691561681243920, 6707888537328997200, 368417878127146461600, 20455964090297751153600, 1146556787261188952159280, 64797319609481605046295780
Offset: 0

Views

Author

Peter Luschny, Jan 09 2023

Keywords

Comments

Number of Motzkin paths of length 4n with exactly 2n horizontal steps: a(1) = 6: UDHH, UHDH, UHHD, HUDH, HUHD, HHUD. - Alois P. Heinz, Aug 02 2023

Crossrefs

Programs

  • Maple
    ser := series(hypergeom([1/4, 3/4], [2], 64*x), x, 20):
    seq(coeff(ser, x, n), n = 0..16);

Formula

a(n) = A359364(4*n, 2*n).
a(n) = A000108(n) * A001448(n) = binomial(2*n,n)/(n+1)*binomial(4*n,2*n). - Alois P. Heinz, Aug 02 2023