cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359669 a(n) = coefficient of x^n in A(x) where x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(n*(n+1)) * A(x)^(n^2).

Original entry on oeis.org

1, 1, 0, 3, 6, 13, 55, 142, 429, 1495, 4538, 14894, 50279, 164189, 554402, 1883870, 6371434, 21854442, 75183191, 259137380, 899092908, 3127293679, 10907931688, 38188033950, 133998312862, 471339759941, 1662075700667, 5872497411731, 20790187564837, 73741279736768
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Crossrefs

Cf. A359672.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff(x - sum(m=-#A, #A, (-1)^(m-1) * x^(m*(m+1)) * Ser(A)^(m^2) ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) x = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(n*(n+1)) * A(x)^(n^2).
(2) -x = Product_{n>=1} (1 - x^(2*n)*A(x)^(2*n-1)) * (1 - x^(2*n-2)*A(x)^(2*n-1)) * (1 - x^(2*n)*A(x)^(2*n)), due to the Jacobi triple product identity.