cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359673 a(n) = coefficient of x^n in A(x) where 1 = Sum_{n=-oo..+oo} (2*x + (-x)^n*A(x)^n)^n.

Original entry on oeis.org

1, 2, 5, 13, 30, 74, 202, 616, 2126, 7828, 29366, 110398, 414214, 1556848, 5892713, 22524354, 86954484, 338421674, 1324660464, 5204326208, 20498580511, 80907096678, 320002290542, 1268500509496, 5040195484362, 20073242195580, 80120884387322, 320442284717582, 1283939790460139
Offset: 0

Views

Author

Paul D. Hanna, Jan 10 2023

Keywords

Comments

Given g.f. A(x), x*A(x) equals a series reversion of x*G(-x) where G(x) is the g.f. of A355868.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 13*x^3 + 30*x^4 + 74*x^5 + 202*x^6 + 616*x^7 + 2126*x^8 + 7828*x^9 + 29366*x^10 + 110398*x^11 + 414214*x^12 + ...
SPECIFIC VALUES.
A(x) = 2 at x = 0.2170550872218893465015254812376904599677836767029937...
A(1/5) = 1.8185729641608353079390837085677719656772552871159724...
		

Crossrefs

Cf. A355868.

Programs

  • PARI
    {a(n) = my(A=[1]);
    for(i=1,n, A = concat(A,0); A[#A] = polcoeff(-1 + sum(m=-#A,#A, (2*x + (-x*Ser(A))^m)^m ), #A)/2);A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n=-oo..+oo} (2*x + (-x)^n * A(x)^n)^n.
(2) 1 = Sum_{n=-oo..+oo} -x^(2*n+1) * A(x)^(n+1) * (2 + (-x)^n * A(x)^(n+1))^n.
(3) 1 = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x)^(n^2) / (1 - 2*(-x)^(n+1) * A(x)^n)^n.
(4) 1 = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x)^(n^2) / (1 + 2*(-x)^(n+1) * A(x)^n)^(n+1).