A359676 Least positive integer whose weakly increasing prime indices have zero-based weighted sum n (A359674).
1, 4, 6, 8, 14, 12, 16, 20, 30, 24, 32, 36, 40, 52, 48, 56, 100, 72, 80, 92, 96, 104, 112, 124, 136, 148, 176, 152, 214, 172, 184, 188, 262, 212, 272, 236, 248, 244, 304, 268, 346, 284, 328, 292, 386, 316, 398, 332, 376, 356, 458, 388, 478, 404, 472, 412, 526
Offset: 1
Examples
The terms together with their prime indices begin: 1: {} 4: {1,1} 6: {1,2} 8: {1,1,1} 14: {1,4} 12: {1,1,2} 16: {1,1,1,1} 20: {1,1,3} 30: {1,2,3} 24: {1,1,1,2} 32: {1,1,1,1,1} 36: {1,1,2,2} 40: {1,1,1,3} 52: {1,1,6} 48: {1,1,1,1,2}
Programs
-
Mathematica
nn=20; primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}]; seq=Table[wts[primeMS[n]],{n,1,Prime[nn]^2}]; Table[Position[seq,k][[1,1]],{k,0,nn}]
Comments