A359683 Greatest positive integer whose reversed (weakly decreasing) prime indices have weighted sum (A318283) equal to n.
1, 2, 3, 5, 7, 11, 14, 22, 26, 34, 44, 55, 68, 85, 110, 130, 170, 190, 242, 290, 374, 418, 506, 638, 748, 836, 1012, 1276, 1364, 1628, 1914, 2090, 2552, 3190, 3410, 4070, 4510, 5060, 6380, 7018, 8140, 9020, 9922, 11396, 14036, 15004, 17908, 19844, 21692, 23452
Offset: 0
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 3: {2} 5: {3} 7: {4} 11: {5} 14: {1,4} 22: {1,5} 26: {1,6} 34: {1,7} 44: {1,1,5} 55: {3,5} 68: {1,1,7} 85: {3,7} 110: {1,3,5} 130: {1,3,6} 170: {1,3,7} 190: {1,3,8} 242: {1,5,5} 290: {1,3,10} The 6 numbers with weighted sum of reversed prime indices 9, together with their prime indices: 18: {1,2,2} 23: {9} 25: {3,3} 28: {1,1,4} 33: {2,5} 34: {1,7} Hence a(9) = 34.
Crossrefs
The unreversed version is A359497.
Programs
-
Mathematica
nn=10; primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; ots[y_]:=Sum[i*y[[i]],{i,Length[y]}]; seq=Table[ots[Reverse[primeMS[n]]],{n,1,2^nn}]; Table[Position[seq,k][[-1,1]],{k,0,nn}]
Extensions
More terms from Jinyuan Wang, Jan 26 2023
Comments