cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359683 Greatest positive integer whose reversed (weakly decreasing) prime indices have weighted sum (A318283) equal to n.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 14, 22, 26, 34, 44, 55, 68, 85, 110, 130, 170, 190, 242, 290, 374, 418, 506, 638, 748, 836, 1012, 1276, 1364, 1628, 1914, 2090, 2552, 3190, 3410, 4070, 4510, 5060, 6380, 7018, 8140, 9020, 9922, 11396, 14036, 15004, 17908, 19844, 21692, 23452
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      3: {2}
      5: {3}
      7: {4}
     11: {5}
     14: {1,4}
     22: {1,5}
     26: {1,6}
     34: {1,7}
     44: {1,1,5}
     55: {3,5}
     68: {1,1,7}
     85: {3,7}
    110: {1,3,5}
    130: {1,3,6}
    170: {1,3,7}
    190: {1,3,8}
    242: {1,5,5}
    290: {1,3,10}
The 6 numbers with weighted sum of reversed prime indices 9, together with their prime indices:
  18: {1,2,2}
  23: {9}
  25: {3,3}
  28: {1,1,4}
  33: {2,5}
  34: {1,7}
Hence a(9) = 34.
		

Crossrefs

First position of n in A318283, unreversed A304818.
The unreversed version is A359497.
The least instead of greatest is A359679, unreversed A359682.
A112798 lists prime indices, length A001222, sum A056239.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=10;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
    seq=Table[ots[Reverse[primeMS[n]]],{n,1,2^nn}];
    Table[Position[seq,k][[-1,1]],{k,0,nn}]

Extensions

More terms from Jinyuan Wang, Jan 26 2023