A359697 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is carryless product n X k base 10.
1, 2, 4, 3, 6, 9, 4, 8, 2, 6, 5, 0, 5, 0, 5, 6, 2, 8, 4, 0, 6, 7, 4, 1, 8, 5, 2, 9, 8, 6, 4, 2, 0, 8, 6, 4, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 12, 24, 36, 48, 50, 62, 74, 86, 98, 120, 132, 144
Offset: 1
Examples
Triangle begins: 1; 2, 4; 3, 6, 9; 4, 8, 2, 6; 5, 0, 5, 0, 5; 6, 2, 8, 4, 0, 6; 7, 4, 1, 8, 5, 2, 9; 8, 6, 4, 2, 0, 8, 6, 4; 9, 8, 7, 6, 5, 4, 3, 2, 1; 10, 20, 30, 40, 50, 60, 70, 80, 90, 100; 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121; 12, 24, 36, 48, 50, 62, 74, 86, 98, 120, 132, 144;
Links
- Seiichi Manyama, Rows n = 1..99, flattened
- David Applegate, Marc LeBrun and N. J. A. Sloane, Carryless Arithmetic (I): The Mod 10 Version.
- Index entries for sequences related to carryless arithmetic
Crossrefs
Programs
-
PARI
T(n, k) = fromdigits(Vec(Pol(digits(n))*Pol(digits(k)))%10);