cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359715 Column 2 of triangle A359670; a(n) = A359670(n+2,2) for n >= 0.

Original entry on oeis.org

1, 12, 68, 284, 998, 3092, 8724, 22904, 56679, 133516, 301664, 657368, 1387854, 2849168, 5704476, 11166464, 21415632, 40312176, 74593476, 135864792, 243872632, 431835140, 755039948, 1304589104, 2229192801, 3769452152, 6311385252, 10469412968, 17214152072
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Comments

The g.f. G(x,y) of triangle A359670 satisfies: G(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * (x*y*G(x,y) + x^n)^n].

Crossrefs

Cf. A359670.

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,n+2,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^(n+2)) )^m ) );
    polcoeff( polcoeff( A,n+2,x),2,y)}
    for(n=0,30, print1( a(n),", "))
    
  • PARI
    {a(n) = my(A=[1]); for(i=1,n+2, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(m=-#A,#A, (-1)^m * x^m * (y*Ser(A) + x^(m-1))^(m+1) )/(-y),#A-1,x) ); polcoeff( A[n+3],2,y)}
    for(n=0,30, print1(a(n),", "))