A359746 Numbers k such that k, k+1 and k+2 have the same ordered prime signature.
33, 85, 93, 141, 201, 213, 217, 301, 393, 445, 633, 697, 921, 1041, 1137, 1261, 1309, 1345, 1401, 1641, 1761, 1837, 1885, 1893, 1941, 1981, 2013, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2665, 2721, 2733, 3097, 3385, 3601, 3693, 3729, 3865, 3901, 3957
Offset: 1
Keywords
Examples
33 is a term since 33 = 3^1 * 11^1, 34 = 2^1 * 17^1, and 35 = 5^1 * 7^1 have the same ordered prime signature, (1, 1). 4923 is a term since 4923 = 3^2 * 547^1, 4924 = 2^2 * 1231^1, and 4925 = 5^2 * 197^1 have the same ordered prime signature, (2, 1). 603 is a term of A052214 but not a term of this sequence, since 603 = 3^2 * 67^1, 604 = 2^2 * 151^1, and 605 = 5^1 * 11^2 have different ordered prime signatures, (2, 1) or (1, 2).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := SameQ @@ (FactorInteger[#][[;; , 2]]& /@ (n + {0, 1, 2})); Select[Range[2, 4000], q]
-
PARI
lista(nmax) = {my(e1 = [], e2 = factor(2)[,2]); for(n = 3, nmax, e3 = factor(n)[,2]; if(e1 == e2 && e2 == e3, print1(n-2, ", ")); e1 = e2; e2 = e3); }
Comments