A359757 Greatest positive integer whose weakly increasing prime indices have zero-based weighted sum (A359674) equal to n.
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 12167, 11449, 15341, 24389, 16399, 26071, 29791, 31117, 35557, 50653, 39401, 56129, 68921, 58867, 72283, 83521, 79007, 86903, 103823
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 4: {1,1} 9: {2,2} 25: {3,3} 49: {4,4} 121: {5,5} 169: {6,6} 289: {7,7} 361: {8,8} 529: {9,9} 841: {10,10}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
A053632 counts compositions by zero-based weighted sum.
Programs
-
Mathematica
nn=10; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}]; seq=Table[wts[prix[n]],{n,2^nn}]; Table[Position[seq,k][[-1,1]],{k,nn}]
-
PARI
a(n)={ my(recurse(r, k, m) = if(k==1, if(m>=r, prime(r)^2), my(z=0); for(j=1, min(m, (r-k*(k-1)/2)\k), z=max(z, self()(r-k*j, k-1, j)*prime(j))); z)); vecmax(vector((sqrtint(8*n+1)-1)\2, k, recurse(n,k,n))); } \\ Andrew Howroyd, Jan 21 2023
Extensions
Terms a(21) and beyond from Andrew Howroyd, Jan 21 2023
Comments