cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359761 a(n) = binomial(4*n, 2*n)*(2*n)!/(2^n*n!).

Original entry on oeis.org

1, 6, 210, 13860, 1351350, 174594420, 28109701620, 5421156741000, 1218404977539750, 312723944235202500, 90252130306279441500, 28929910132721937339000, 10197793321784482911997500, 3920659309406065045704885000, 1632674555274097086889962825000, 732091270584905133761459330730000
Offset: 0

Views

Author

Peter Luschny, Jan 14 2023

Keywords

Crossrefs

Cf. A359760.

Programs

  • Maple
    a := binomial(4*n, 2*n)*(2*n)!/(2^n*n!):
    seq(a(n), n = 0..15);

Formula

a(n) = (2^(3*n)*Gamma(2*n + 1/2))/(sqrt(Pi)*Gamma(n + 1)).
a(n) = A359760(4*n, 2*n), the central terms of the triangle without the zeros.
From R. J. Mathar, Jan 25 2023: (Start)
a(n) = A001448(n)*A001147(n).
D-finite with recurrence n*a(n) -2*(4*n-1)*(4*n-3)*a(n-1)=0. (End)
From Stefano Spezia, Aug 24 2025: (Start)
E.g.f.: 2*EllipticK(8*sqrt(2*x)/(1 + 4*sqrt(2*x)))/(Pi*sqrt(1 + 4*sqrt(2*x))).
E.g.f.: hypergeom([1/2, 1/2], [1], 8*sqrt(2*x)/(1 + 4*sqrt(2*x)))/sqrt(1 + 4*sqrt(2*x)). (End)