A359779 Dirichlet inverse of A359778, where A359778 is the number of factorizations of n into factors not divisible by p^p for any prime p (terms of A048103).
1, -1, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 0, -1, 0, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 1, -1, 1, 1, 0, -1, 0, -1, 1, 0, 1, -1, 1, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 0, 1, -1, 1, 0, 1, -1, 0, -1, 0, 1, 1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, 0, 1, 0, 0, 0, 0, -1, 1, 1, 0, -1, 1, -1, 0, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 1]>f[k, 2])); }; A359778(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (d<=m) && A359550(d), s += A359778(n/d, d))); (s)); memoA359779 = Map(); A359779(n) = if(1==n,1,my(v); if(mapisdefined(memoA359779,n,&v), v, v = -sumdiv(n,d,if(d
A359778(n/d)*A359779(d),0)); mapput(memoA359779,n,v); (v)));
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA359778(n/d) * a(d).
Comments