cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A359779 Dirichlet inverse of A359778, where A359778 is the number of factorizations of n into factors not divisible by p^p for any prime p (terms of A048103).

Original entry on oeis.org

1, -1, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 0, -1, 0, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 1, -1, 1, 1, 0, -1, 0, -1, 1, 0, 1, -1, 1, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 0, 1, -1, 1, 0, 1, -1, 0, -1, 0, 1, 1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, 0, 1, 0, 0, 0, 0, -1, 1, 1, 0, -1, 1, -1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2023

Keywords

Comments

The first term with absolute value larger than 1 is a(420) = -2.

Crossrefs

Cf. A048103, A359550, A359778 (Dirichlet inverse).

Programs

  • PARI
    A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 1]>f[k, 2])); };
    A359778(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (d<=m) &&
    A359550(d), s += A359778(n/d, d))); (s));
    memoA359779 = Map();
    A359779(n) = if(1==n,1,my(v); if(mapisdefined(memoA359779,n,&v), v, v = -sumdiv(n,d,if(dA359778(n/d)*A359779(d),0)); mapput(memoA359779,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA359778(n/d) * a(d).
Showing 1-1 of 1 results.