cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359790 Dirichlet inverse of function f(n) = 1 + n', where n' stands for the arithmetic derivative of n, A003415(n).

Original entry on oeis.org

1, -2, -2, -1, -2, 2, -2, -1, -3, 0, -2, 3, -2, -2, -1, 0, -2, 6, -2, 3, -3, -6, -2, 7, -7, -8, -8, 3, -2, 12, -2, 3, -7, -12, -5, 9, -2, -14, -9, 11, -2, 18, -2, 3, 0, -18, -2, 11, -11, 6, -13, 3, -2, 26, -9, 15, -15, -24, -2, 17, -2, -26, -4, 9, -11, 30, -2, 3, -19, 16, -2, 9, -2, -32, 0, 3, -11, 36, -2, 23, -16, -36
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2023

Keywords

Crossrefs

Cf. A003415, A359780, A359781 (parity of terms), A359782 (positions of even terms), A359783 (of odd terms).
Cf. also A346241, A347082, A347084, A359603, A359789, A359791 [= a(A003961(n))] (for similar constructions).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    memoA359790 = Map();
    A359790(n) = if(1==n,1,my(v); if(mapisdefined(memoA359790,n,&v), v, v = -sumdiv(n,d,if(dA003415(n/d))*A359790(d),0)); mapput(memoA359790,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA003415(n/d)) * a(d).