A359791 Dirichlet inverse of function f(n) = 1 + A349905(n), where A349905(n) is the arithmetic derivative of prime shifted n.
1, -2, -2, -3, -2, -1, -2, -8, -7, -3, -2, 0, -2, -7, -5, -16, -2, 0, -2, -4, -9, -9, -2, 23, -11, -13, -40, -12, -2, 12, -2, -16, -11, -15, -11, 42, -2, -19, -15, 21, -2, 12, -2, -16, -24, -25, -2, 128, -19, -12, -17, -24, -2, 67, -13, 17, -21, -27, -2, 105, -2, -33, -48, 48, -17, 12, -2, -28, -27, 0, -2, 224
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A349905(n) = A003415(A003961(n)); memoA359791 = Map(); A359791(n) = if(1==n,1,my(v); if(mapisdefined(memoA359791,n,&v), v, v = -sumdiv(n,d,if(d
A349905(n/d))*A359791(d),0)); mapput(memoA359791,n,v); (v)));