cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359791 Dirichlet inverse of function f(n) = 1 + A349905(n), where A349905(n) is the arithmetic derivative of prime shifted n.

Original entry on oeis.org

1, -2, -2, -3, -2, -1, -2, -8, -7, -3, -2, 0, -2, -7, -5, -16, -2, 0, -2, -4, -9, -9, -2, 23, -11, -13, -40, -12, -2, 12, -2, -16, -11, -15, -11, 42, -2, -19, -15, 21, -2, 12, -2, -16, -24, -25, -2, 128, -19, -12, -17, -24, -2, 67, -13, 17, -21, -27, -2, 105, -2, -33, -48, 48, -17, 12, -2, -28, -27, 0, -2, 224
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2023

Keywords

Crossrefs

Cf. A359764 (parity of terms), A359765 (positions of odd terms), A359766 (of even terms).
Cf. also A359169.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349905(n) = A003415(A003961(n));
    memoA359791 = Map();
    A359791(n) = if(1==n,1,my(v); if(mapisdefined(memoA359791,n,&v), v, v = -sumdiv(n,d,if(dA349905(n/d))*A359791(d),0)); mapput(memoA359791,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA349905(n/d)) * a(d).
a(n) = A359790(A003961(n)).