cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359793 Dirichlet inverse of (-1)^A003415(n), where A003415 is the arithmetic derivative of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 3, 1, -2, 0, 3, 1, 2, 1, 3, 1, -4, 1, 4, 1, 2, 1, 3, 1, -6, 0, 3, 0, 2, 1, 9, 1, -4, 1, 3, 1, 8, 1, 3, 1, -6, 1, 9, 1, 2, 0, 3, 1, -20, 0, 4, 1, 2, 1, 4, 1, -6, 1, 3, 1, 16, 1, 3, 0, 0, 1, 9, 1, 2, 1, 9, 1, -4, 1, 3, 0, 2, 1, 9, 1, -20, 0, 3, 1, 16, 1, 3, 1, -6, 1, 12, 1, 2, 1, 3, 1, -28, 1, 4, 0
Offset: 1

Views

Author

Antti Karttunen, Jan 14 2023

Keywords

Crossrefs

Cf. A008966, A005117, A013929 (apparently parity of terms, positions of odd terms, and positions of even terms).
Cf. also A359780, A359823.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A359792(n) = ((-1)^A003415(n));
    memoA359793 = Map();
    A359793(n) = if(1==n,1,my(v); if(mapisdefined(memoA359793,n,&v), v, v = -sumdiv(n,d,if(dA359792(n/d)*A359793(d),0)); mapput(memoA359793,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA359792(n/d) * a(d).