A359806 Lexicographically earliest sequence of distinct positive terms such that for any n > 0 and any k > 0, floor((2^k) / n) AND floor((2^k) / a(n)) = 0 (where AND denotes the bitwise AND operator).
2, 1, 6, 5, 4, 3, 14, 9, 8, 40, 32, 24, 60, 7, 20, 17, 16, 144, 128, 15, 72, 64, 512, 12, 256, 120, 13824, 39, 2048, 35, 62, 11, 1056, 544, 30, 288, 4096, 1008, 28, 10, 1024, 156, 5504, 1408, 112, 1424, 8192, 96, 1016, 51200, 102, 240, 32768, 27648, 248, 78
Offset: 1
Examples
The first terms, alongside the binary expansions of 1/n and 1/a(n) (with periodic parts in parentheses), are: n a(n) bin(1/n) bin(1/a(n)) -- ---- -------------- ----------- 1 2 1.(0) 0.1(0) 2 1 0.1(0) 1.(0) 3 6 0.(01) 0.0(01) 4 5 0.01(0) 0.(0011) 5 4 0.(0011) 0.01(0) 6 3 0.0(01) 0.(01) 7 14 0.(001) 0.0(001) 8 9 0.001(0) 0.(000111) 9 8 0.(000111) 0.001(0) 10 40 0.0(0011) 0.000(0011) 11 32 0.(0001011101) 0.00001(0) 12 24 0.00(01) 0.000(01)
Links
- Rémy Sigrist, C++ program
- Rémy Sigrist, PARI program
- Index entries for sequences that are permutations of the natural numbers
Programs
-
PARI
See Links section.
Comments