A359856 Number of permutations of [1..n] which are indecomposable by direct and skew sums.
1, 1, 0, 0, 2, 22, 202, 1854, 17866, 183806, 2029850, 24081006, 306486314, 4175102110, 60708557626, 939518187726, 15430666746826, 268214861561726, 4921023843969242, 95066628485598126, 1929291834938927210, 41042364285004263262, 913409469123533445754, 21227246586149632119438
Offset: 0
Keywords
Examples
The only permutations of [1..4] which are indecomposable by direct and skew sums are 2413 and 3142.
Links
- Wikipedia, Skew and direct sums of permutations
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[2*(2 - 1/Sum[k!*x^k, {k, 0, nmax}]) - Sum[k!*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 19 2023 *)
-
PARI
seq(n)={my(p=sum(k=0, n, k!*x^k, O(x*x^n))); Vec(2*(2 - 1/p) - p)} \\ Andrew Howroyd, Jan 16 2023
Formula
G.f.: 2*(2 - 1/F(x)) - F(x) where F(x) = Sum_{k>=0} k!*x^k.
G.f.: S(F(x)) - 2*F(x)^2 - F(x) + x + 1 where S(x) is the g.f. of A111111 and F(x) = Sum_{k>=1} k!*x^k.
a(n) ~ n! * (1 - 4/n - 2/n^2 - 10/n^3 - 64/n^4 - 506/n^5 - 4762/n^6 - 51824/n^7 - 638678/n^8 - 8777898/n^9 - 132990772/n^10 - ...). - Vaclav Kotesovec, Jan 19 2023