cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359856 Number of permutations of [1..n] which are indecomposable by direct and skew sums.

Original entry on oeis.org

1, 1, 0, 0, 2, 22, 202, 1854, 17866, 183806, 2029850, 24081006, 306486314, 4175102110, 60708557626, 939518187726, 15430666746826, 268214861561726, 4921023843969242, 95066628485598126, 1929291834938927210, 41042364285004263262, 913409469123533445754, 21227246586149632119438
Offset: 0

Views

Author

Ludovic Schwob, Jan 16 2023

Keywords

Examples

			The only permutations of [1..4] which are indecomposable by direct and skew sums are 2413 and 3142.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[2*(2 - 1/Sum[k!*x^k, {k, 0, nmax}]) - Sum[k!*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 19 2023 *)
  • PARI
    seq(n)={my(p=sum(k=0, n, k!*x^k, O(x*x^n))); Vec(2*(2 - 1/p) - p)} \\ Andrew Howroyd, Jan 16 2023

Formula

G.f.: 2*(2 - 1/F(x)) - F(x) where F(x) = Sum_{k>=0} k!*x^k.
G.f.: S(F(x)) - 2*F(x)^2 - F(x) + x + 1 where S(x) is the g.f. of A111111 and F(x) = Sum_{k>=1} k!*x^k.
a(n) ~ n! * (1 - 4/n - 2/n^2 - 10/n^3 - 64/n^4 - 506/n^5 - 4762/n^6 - 51824/n^7 - 638678/n^8 - 8777898/n^9 - 132990772/n^10 - ...). - Vaclav Kotesovec, Jan 19 2023