A359899 Number of strict odd-length integer partitions of n whose parts have the same mean as median.
0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 6, 1, 1, 6, 1, 5, 7, 1, 1, 8, 12, 1, 9, 2, 1, 33, 1, 1, 11, 1, 50, 12, 1, 1, 13, 70, 1, 46, 1, 1, 122, 1, 1, 16, 102, 155, 17, 1, 1, 30, 216, 258, 19, 1, 1, 310, 1, 1, 666, 1, 382, 23, 1, 1, 23, 1596, 1, 393, 1, 1
Offset: 0
Keywords
Examples
The a(30) = 33 partitions: (30) (11,10,9) (8,7,6,5,4) (12,10,8) (9,7,6,5,3) (13,10,7) (9,8,6,4,3) (14,10,6) (9,8,6,5,2) (15,10,5) (10,7,6,4,3) (16,10,4) (10,7,6,5,2) (17,10,3) (10,8,6,4,2) (18,10,2) (10,8,6,5,1) (19,10,1) (10,9,6,3,2) (10,9,6,4,1) (11,7,6,4,2) (11,7,6,5,1) (11,8,6,3,2) (11,8,6,4,1) (11,9,6,3,1) (12,7,6,3,2) (12,7,6,4,1) (12,8,6,3,1) (12,9,6,2,1) (13,7,6,3,1) (13,8,6,2,1) (14,7,6,2,1) (11,10,6,2,1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,0,30}]
-
PARI
\\ Q(n,k,m) is g.f. for k strict parts of max size m. Q(n,k,m)={polcoef(prod(i=1, m, 1 + y*x^i + O(x*x^n)), k, y)} a(n)={if(n==0, 0, sumdiv(n, d, if(d%2, my(m=n/d, h=d\2, r=n-m*(h+1)); if(r>=h*(h+1), polcoef(Q(r, h, m-1)*Q(r, h, r), r)))))} \\ Andrew Howroyd, Jan 21 2023
Formula
a(p) = 1 for prime p. - Andrew Howroyd, Jan 21 2023