A359939 Lexicographically earliest strictly increasing sequence of primes whose partial products lie between noncomposite numbers.
2, 3, 5, 19, 41, 67, 113, 653, 883, 1439, 3823, 10631, 12841, 14251, 23357, 27103, 30491, 64679, 78823, 110977, 115127, 118747, 159431, 215587, 301039, 342257, 343639, 428401, 473383, 493583, 566723, 621133, 638371, 639157, 680539, 904049, 993037, 1146133, 1252507
Offset: 1
Keywords
Examples
2 - 1 = 1 and 2 + 1 = 3 are both noncomposite numbers. 2*3 - 1 = 5 and 2*3 + 1 = 7 are both noncomposite numbers. 2*3*5 - 1 = 29 and 2*3*5 + 1 = 31 are both noncomposite numbers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..150
Programs
-
Mathematica
a[1] = 2; a[n_] := a[n] = Module[{r = Product[a[k],{k, 1, n-1}], p = NextPrime[a[n-1]]}, While[!PrimeQ[r*p-1] || !PrimeQ[r*p+1], p = NextPrime[p]]; p]; Array[a, 50]
Comments